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Abstract. We discuss the effect that small fluctuations of density and local
anisotropy (principal unequal stresses) may have on the occurrence of cracking in
spherical compact objects having a non local and local politropic equations of state.
A non local equation of state provides, at a given point, the radial pressure not only
as function of the density at that point, but its functional throughout the enclosed
distribution. It is shown that departures from the equilibrium may lead to the
appearance of cracking and it seams to be related not only to fluctuations on the
local anisotropy but also to the density. We have found that these fluctuations should
have the same sign and the effect of the perturbations in density qualitatively different
to the variations in anisotropy.

1. Cracking of selfgravitating compact objects
Some years ago, Herrera and collaborators in a series of papers [1, 2, 3, 4] elaborate the
concept of cracking for selfgravitating isotropic and anisotropic matter configurations.
It was introduced to describe the behaviour of fluid distributions just after its departure
from equilibrium, when total non-vanishing radial forces of different signs appear within
the system. They state that there is a cracking whenever the radial force is directed
inward in the inner part of the sphere and reverses its sign beyond some value of the
radial coordinate or, when the force is directed outward in the inner part and changes
sign in the outer part, we shall say that there is an overturning. This effect is related to
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the tidal acceleration of fluid elements [3, 5], defined by
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βuγ
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)
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where hα
β denotes the projector onto the three-space orthogonal to the four-velocity uα,

δxν is a vector connecting the two neighbouring particles and duα

ds ≡ uµuα
;µ. More over,

defining

R =
dPr

dr
+ (ρ + Pr)

(
m + 4πr3Pr

r (r − 2m)

)
− 2

r
(P⊥ − Pr) (2)

which is just the hydrostatic equilibrium equation that vanishes for static (or slowly
evolving) configurations, and can be obtained considering spherically symmetric
distribution of matter with a vanishing rotation velocity, i.e. 2Ω2 = Ωαβ

αβ = 0. Equations
(1) and ( 2) evaluated at the moment immediately after perturbation lead to [3, 4]

R = −e2λ(ρ + P )
eνr2

∫ a

0
dr̃ eν r̃2 dΘ

ds
(3)

where Θ represents the expansion and, ds2 = e2νdt2 − e2λdr2 − r2(dθ2 + sin θdφ2), the
Schwarzchild line element, has been assumed (see reference [3] for details). It can be
appreciated from (3) that for the cracking to occur at some value of 0 ≤ r ≤ a, it is
necessary that dΘ

ds vanishes somewhere within the configuration. It also clear the non
local nature of this effect and, it has been shown that even small deviations from local
isotropy may lead to drastic changes in the evolution of the system as compared with
the purely locally isotropic case [4].

On the other hand and concerning the nonlocal physics within general relativistic
matter configurations, we have study a particular equation of state where the radial
pressure Pr(r) is not only a function of the energy density, ρ(r), at that point but also
its functional throughout the rest of the configuration. For this non local equation of
state (NLES ), any change in the radial pressure takes into account the effects of the
variations of the energy density within the entire volume [6, 7, 8]. It has been shown
that in the static limit the NLES can be written as

Pr(r) = ρ(r)− 2
r3

∫ r

0
r̄2ρ(r̄) dr̄; (4)

where C is an arbitrary integration constant. It is clear that in equation (4) a collective
behavior on the physical variables ρ(r) and Pr(r) is present.

In the present paper we shall explore the influence of fluctuations of density and of
local anisotropy have, on the stability of non-local and local politropic anisotropic matter
configurations in general relativity.

This paper is organized as follows. Next Section 2 will describe non local matter
configurations and state our notation. The concept of cracking for selfgravitating
isotropic and anisotropic matter configurations is considered in Section 3. Finally some
preliminary conclusions are displayed in Section 5



2. Compact objects with a non nocal equations of state
Following [7] we shall consider a static spherically symmetric anisotropic distribution of
matter with an energy-momentum represented by Tµ

ν = diag (ρ,−Pr,−P⊥,−P⊥),
where, ρ is the energy density, Pr the radial pressure and P⊥ the tangential
pressure. Adopting the above standard Schwarzschild coordinates (t, r, θ, φ) Einstein
field equations can be written as

8πρ =
1
r2

+
e−2λ

r

[
2λ′ − 1

r

]
; −8πPr =

1
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− e−2λ

r
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2ν ′ +

1
r

]
and

−8πP⊥ = e−2λ
[
λ′

r
− ν ′
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]
where primes denote differentiation with respect to r.

Now, equation (4) can re-stated as a differential equation

Pr(r) = ρ(r)− 2
r3

∫ r

0
r̄2ρ(r̄) dr̄ ⇔ ρ− 3Pr + r

(
ρ′ − P ′

r

)
= 0 (5)

and the corresponding Einstein Field Equations for anisotropic fluids with NLES (5)
can be written as:

4πρ =
m′

r2
, (6)

4πPr =
m′

r2
− 2m

r3
and (7)

8πP⊥ =
m′′

r
+

2 (m′r −m)
r3

[
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− 1

]
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and the corresponding line element is

ds2 =
(
e2κdt2 − dr2

)(
1− 2m(r)

r

) − r2dΩ2 (9)

where eκ = 1− m(R)
R and r = R the boundary of the distribution. It is clear that if the

profile of the energy density, ρ(r), is provided, the metric element m(r) and all other
physical variables (Pr and P⊥) can be obtained from field equations (6), (7) and (8),
respectively.

3. Cracking configurations
Now, following [4] we assume that the system having some pressure and density
distributions satisfying R = 0, is perturbed from its hydrostatic equilibrium. Thus,
fluctuations in density and pressure induce total radial forces (R = 0) which depending
on their spatial distribution may lead to the cracking, i.e radial force directed inward,
R > 0 or overturning directed outward, R < 0 of the source. Therefore, we will be
looking for a change of the sign of R, beyond some value of the radial coordinate. For
the cracking to occur, we will be considering, exclusively, perturbations under which



the system is dynamically unstable. One way to assure this is to assume that the value
of the ratio of specific heats of the fluid is not equal to the critical value required for
marginal (neutral) dynamical stability. In other words, under perturbations of density
and local anisotropy, we shall assume that the radial pressure of the system maintains
the same radial dependence it had in equilibrium.

R = R(ρ0 + δρ, Pr,∆0 + δ∆) ≡ R0(ρ0, Pr,∆0)︸ ︷︷ ︸
=0

+R̃(ρ0, Pr,∆0, δρ, δ∆) (10)

The inability to adapt its radial pressure to the perturbed situation is equivalent to
assuming that the pressure-density relation (the ratio of specific heats) never reaches
the value required for neutral equilibrium

4. The modeling performed
We shall compare perturbed models starting with the same density profile for local and
non-local. For non local models we use three of the solutions presented in [7] and for local
ones we shall consider politropic equations of state for anisotropic matter configurations,
i.e.

ρ(r)→


ρ(r)− 2

r3

∫ r
0 r̄2ρ(r̄) dr̄ = Pr(r)

KρΓ(r) = Pr(r)
for R = 0⇒


∆NL

∆Politropic

(11)

and in each case, for the configurations in equilibrium, the local anisotropy, ∆ ∝ P⊥−Pr

r ,
is obtained.

Figure 1. The induced total radial force
for Steward’s density profile. Left plates
correspond to non local models, while right
ones represent a family of politropic equations
of state for different values of the politropic
index, n.

In order to illustrate the above procedure we shall work out several examples from
[7]. The first density profile comes from a density profile proposed by B. W. Stewart [9],
to describe anisotropic conformally flat static bounded configurations:

ρS =
1

8 πr2

(
e2Kr − 1

) (
e4Kr + 8Kre2Kr − 1

)
(e2Kr + 1)3

⇔ mS =
r

2

(
e2Kr − 1
e2Kr + 1

)2

, (12)



Density Profile µ M (M�) za ρa × 1014 (gr/cm3) ρc ×1015 (gr/cm3)

Stewart 0.32 2.15 0.6 6.80 1.91
Gokhroo-Mehra 0.40 2.80 1.2 8.84 1.99

Wyman 0.38 2.54 1.0 8.04 3.04

Table 1. All parameters have been chosen to represent a possible compact object with
a = 10 Km. and the corresponding mass function satisfying the physical and energy
conditions

with K = const.
The density profile of the second example is due, originally, to P.S. Florides [10], but

also by Stewart [9] and more recently by M. K. Gokhroo and A. L. Mehra [11]. This
solution, represents densities and pressures which, under particular circumstances [12],
give rise to an equation of state similar to the Bethe-Börner-Sato newtonian equation of
state for nuclear matter [13].

ρGM =
σ

8π

[
1−K

r2

a2

]
⇔ mGM =

σ r3

6

[
1 − 3 K

5
r2

a2

]
, (13)

with σ and K = const.
The last density profile corresponds to a solution originally proposed M. Wyman [14]

and is written as

ρW = − C

8 π

K (3 + 5 x)

(1 + 3 x)
5
3

⇔ mW = − 1

2C
1
2

Kx
3
2

(1 + 3x)
2
3

, (14)

with x = C r2 and K, C = const.
In table 1 we have summarized the physical parameters involved in the above models.

They are: the mass, M , in terms of solar mass M�, the gravitational potential at the
surface µ, the boundary redshift za, the surface density ρa and the central density ρc.

4.1. Cracking Non local models
For all de above density profiles, we calculate the induced total radial force from (10).
Thus, for the Steward model, (12), can be written as

R̃S−NL =
µ (eµη − 1)
(eµη + 1)

δρ− 2
η
δ∆ (15)

where, from now on, we have denoted η = r
a and µ = M

a and a corresponds to the
boundary of the distribution. Figure 1 displays it for several of values of density
perturbations.

Again, for the second example (13) the perturbed radial force (10) is

R̃GM−NL =
µη
(
10− 12η2K

)
(5− 3K − 10µη2K)

δρ− 2
η
δ∆ (16)



Figure 2. The induced total radial force for
Gokhroo-Mehra’s density profile. Left plates
correspond to non local models, while right
ones represent a family of politropic equations
of state for different values of the politropic
index, n.

and it is shown in Figure 2
Finally from (14), the expresion for R̃W−NL can be written as

R̃W−NL = − ηK(η2 + 1)(
Kη2 + (1 + 3η2)2/3

)
(1 + 3η2)

δρ− 2
η
δ∆ (17)

and it is plotted in Figure 3.

4.2. Cracking politropic models
As we have pointed out in (11) we are going to compare the cracking for local and non
local models, and we are going to model local equations of state by using a politropic
relation between pressure and density, [15, 16, 17], i.e.

Pr(r) = κρ(r)1+ 1
n , if ρ(r) = ρ0θ(r) ⇒ ρ(r) = κρ

1
n
0 ρ0θ(r)1+

1
n , (18)

The expresion for R̃S−Pol for Stewart model, (12), can be written as
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((
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(
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)
+ 1

)
(1− e−cη) + ecη (ecη − 1)

)
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η

(19)

where
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(
e2cη + 4cηecη − 1

)
η2 (ecη + 1)3

1
n
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1 + (2M

a )
1
2
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1
2

]
(20)

The total induced radial force for the politropic Gokhroo-Mehra model is

R̃GM−Pol = −
µη

(
3η2 − 5− 15σ

(
1− η2

) 2n+1
n

)
2(1− 5µη2 + 3µη4)

δρ− 2δ∆
η

(21)



Figure 3. The induced total radial force
for Wyman’s density profile. Left plates
correspond to non local models, while right
ones represent a family of politropic equations
of state for different values of the politropic
index, n.

Finally, R̃W−Pol can be arranged as

R̃W−Pol =
3kη

(
σ125(1+ 1

n) (η2−1)
(9η2−5)

(
η2−1

(9η2−5)(125−225η2)2/3

) 1
n

− 25

)
10
(
(125− 225η2)2/3 − 15kη2

) δρ− 2δ∆
η

(22)

5. Results and conclusions
We have explored the influence of density and anisotropy fluctuations on the stability of
some matter configurations in General Relativity. It have been found that departures
from the equilibrium may lead to the appearance of cracking (or overturning) and it is
related not only to fluctuations on the local anisotropy but also to the density. In fact, at
least for the families of equation of state we consider, in order to have a cracking within
the configuration, both perturbations should have the same sign, i.e. δρ > 0 ∧ δ∆ > 0
or δρ < 0 ∧ δ∆ < 0.

To study the effect of these perturbations we implement the concept of cracking for
selfgravitating anisotropic matter configurations, developed by Herrera and collaborators
in a series of papers [1, 2, 3, 4]. It was introduced to describe the behaviour of fluid
distributions just after its departure from equilibrium, when total non-vanishing radial
forces of different signs appear at some point within the system. As we have stated in
Section 3, whenever the perturbed radial force (10) is directed inward in the inner part
of the sphere and reverses its sign at some point, we will have a cracking or, when the
force is directed outward in the inner part and changes sign in the outer part, we shall
say that there is an overturning.

In order to compare the effects of these type of perturbations, we have considered
two families of equations of state which differ in its relation between radial pressure and
density. The first type, known as non local equations of state (see references [6, 7, 8]),
provides a relation between radial pressure and density not only as its function at a
particular point, but a functional throughout the enclosed distribution. The second
family of equation of state is the politropic anisotropic equation (18). The two types of
models have the same physical description displayed in Table 1 and equivalent densities



profiles, i.e. (12), (13) and (14).
As it can appreciated from figures 1, 2 and 3 the effect of density and local anisotropy

perturbations are qualitatively different. It is evident that the greater the fluctuation
in the density we have, the larger the possibility for the sphere to crack. Inversely, the
stability of the configurations reveals to be very sensitive to smaller perturbations in the
anisotropy of the stresses. Very small perturbations in the anisotropy are more effective
to generate instability in the configurations. More over, from the expressions of the total
induced radial force (equations (15), (16), (17), (19), (21) and (22) ), it is clear that the
change of its sign emerges from the density perturbation (and not form the fluctuations
in anisotropy) because the contribution of the anisotropy to the instability is equivalent
for all the models. Nevertheless, there should be some perturbation in the anisotropy
for a cracking to occur.

These are preliminary results that should be further explored and forthcoming results
will be reported elsewhere. It is clear that our comprehension of the behavior of highly
compact stars is intimately related to the understanding of the physics at supranuclear
densities which is, today, essentially unknown. Thus, having this uncertainty in mind, we
can explore what is allowed by the present laws of physics, for these particular equations
of state, within the framework of the theory of General Relativity.
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[7] Hernández H and Núñez L A 2004 Can. J. Phys. 82 29 (Preprint gr-qc 0107025 )
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