Revista Notas de Matemática
Vol.7(1), No. 307, 2011, pp. 84-91
http://www.saber.ula.ve/notasdematematica
Comisión de Publicaciones
Departamento de Matemáticas
Facultad de Ciencias
Universidad de Los Andes

ON CHARACTERIZATION BERTRAND MATE OF TIMELIKE BIHARMONIC CURVES IN THE LORENTZIAN Heis^3

Talat Körpınar, Essin Turhan, Iqbal H. Jebril

Abstract

In this paper, we study non-geodesic timelike biharmonic curves and we construct parametric equations for Bertrand mate of timelike biharmonic curves in the Lorentzian Heisenberg group Heis

key words. Heisenberg group, Bertrand curve, biharmonic curve, helices.

1 Introduction

Bertrand curves discovered by J. Bertrand in 1850 are one of the important and interesting topic of classical special curve theory. A Bertrand curve is defined as a special curve which shares its principal normals with another special curve (called Bertrand mate).

On the other hand, Eells and Sampson also envisaged some generalizations and defined biharmonic maps $\varphi:(M,g)\longrightarrow (N,h)$ between Riemannian manifolds as critical points of the bienergy functional

$$E_2(\varphi) = \frac{1}{2} \int_M |\tau(\varphi)|^2 v_g,$$

where $\tau(\varphi) = \text{trace} \nabla d\varphi$ is the tension field of \mathcal{J} that vanishes on harmonic maps [6]. The Euler-Lagrange equation corresponding to E_2 is given by the vanishing of the bitension field

$$\tau_{2}(\varphi) = -\mathcal{J}^{\varphi}(\tau(\varphi)) = -\Delta\tau(\varphi) - \operatorname{trace}R^{N}(d\varphi, \tau(\varphi)) d\varphi, \tag{1.1}$$

where \mathcal{J}^{φ} is the Jacobi operator of φ . The equation $\tau_2(f) = 0$ is called the biharmonic equation. Since \mathcal{J}^{φ} is linear, any harmonic map is biharmonic. Therefore, we are interested in proper biharmonic maps, that is non-harmonic biharmonic maps. In this paper, we study non-geodesic timelike biharmonic curves and we construct parametric equations for Bertrand mate of timelike biharmonic curves in the Lorentzian Heisenberg group Heis³.

2 The Lorentzian Heisenberg Group Heis³

The Lorentzian Heisenberg group Heis^3 can be seen as the space \mathbb{R}^3 endowed with the following multiplication:

$$(\overline{x}, \overline{y}, \overline{z})(x, y, z) = (\overline{x} + x, \overline{y} + y, \overline{z} + z - \overline{x}y + x\overline{y}).$$

Heis³ is a three-dimensional, connected, simply connected and 2-step nilpotent Lie group.

The Lorentz metric g is given by

$$g = -dx^2 + dy^2 + (xdy + dz)^2.$$

The Lie algebra of Heis³ has an orthonormal basis

$$\mathbf{e}_1 = \frac{\partial}{\partial z}, \quad \mathbf{e}_2 = \frac{\partial}{\partial y} - x \frac{\partial}{\partial z}, \quad \mathbf{e}_3 = \frac{\partial}{\partial x},$$
 (2.1)

for which we have the Lie products

$$[\mathbf{e}_2, \mathbf{e}_3] = 2\mathbf{e}_1, \ [\mathbf{e}_3, \mathbf{e}_1] = 0, \ [\mathbf{e}_2, \mathbf{e}_1] = 0,$$
 (2.2)

with

$$g(\mathbf{e}_1, \mathbf{e}_1) = g(\mathbf{e}_2, \mathbf{e}_2) = 1, \quad g(\mathbf{e}_3, \mathbf{e}_3) = -1.$$
 (2.3)

Proposition 2.1. For the covariant derivatives of the Levi-Civita connection of the left-invariant metric g, defined above, the following is true:

$$\nabla = \begin{pmatrix} 0 & \mathbf{e}_3 & \mathbf{e}_2 \\ \mathbf{e}_3 & 0 & \mathbf{e}_1 \\ \mathbf{e}_2 & -\mathbf{e}_1 & 0 \end{pmatrix},\tag{2.4}$$

where the (i,j)-element in the table above equals $\nabla_{\mathbf{e}_i} \mathbf{e}_j$ for our basis

$$\{\mathbf{e}_k, k = 1, 2, 3\} = \{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}.$$

We will use the notation

$$R_{abcd} = R(\mathbf{e}_a, \mathbf{e}_b, \mathbf{e}_c, \mathbf{e}_d),$$

where the indices a, b, c and d take the values 1, 2 and 3.

$$R_{1212} = -1, \quad R_{1313} = 1, \quad R_{2323} = -3.$$
 (2.5)

3 Timelike Biharmonic Curves In The Lorentzian Heis³

Let $\gamma: I \longrightarrow Heis^3$ be a timelike curve on the Lorentzian Heisenberg group Heis³ parametrized by arc length. Let $\{\mathbf{T}, \mathbf{N}, \mathbf{B}\}$ be the Frenet frame fields tangent to the Lorentzian Heisenberg group Heis³ along γ defined as follows:

T is the unit vector field γ' tangent to γ , **N** is the unit vector field in the direction of $\nabla_{\mathbf{T}}\mathbf{T}$ (normal to γ), and **B** is chosen so that $\{\mathbf{T}, \mathbf{N}, \mathbf{B}\}$ is a positively oriented orthonormal basis. Then, we have the following Frenet formulas:

$$\nabla_{\mathbf{T}}\mathbf{T} = \kappa \mathbf{N},$$

$$\nabla_{\mathbf{T}}\mathbf{N} = \kappa \mathbf{T} + \tau \mathbf{B},$$

$$\nabla_{\mathbf{T}}\mathbf{B} = -\tau \mathbf{N},$$
(3.1)

where κ is the curvature of γ and τ is its torsion. With respect to the orthonormal basis $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ we can write

$$\mathbf{T} = T_1 \mathbf{e}_1 + T_2 \mathbf{e}_2 + T_3 \mathbf{e}_3,$$

 $\mathbf{N} = N_1 \mathbf{e}_1 + N_2 \mathbf{e}_2 + N_3 \mathbf{e}_3,$
 $\mathbf{B} = \mathbf{T} \times \mathbf{N} = B_1 \mathbf{e}_1 + B_2 \mathbf{e}_2 + B_3 \mathbf{e}_3.$ (3.2)

Lemma 3.1. (see [18]) Let $\gamma: I \longrightarrow Heis^3$ be a non-geodesic timelike curve on the Lorentzian Heisenberg group $Heis^3$ parametrized by arc length. γ is biharmonic if and only if

$$\kappa = \operatorname{constant} \neq 0,$$

$$\tau = \operatorname{constant},$$

$$N_1 B_1 = 0,$$

$$\kappa^2 - \tau^2 = -1 + 4B_1^2.$$
(3.3)

Theorem 3.2. (see [18]) Let $\gamma: I \longrightarrow Heis^3$ be a non-geodesic timelike biharmonic curve on the Lorentzian Heisenberg group $Heis^3$ parametrized by arc length. If $N_1 = 0$, then

$$\mathbf{T}(s) = \sinh \phi_0 \mathbf{e}_1 + \cosh \phi_0 \sinh \psi(s) \mathbf{e}_2 + \cosh \phi_0 \cosh \psi(s) \mathbf{e}_3, \tag{3.4}$$

where $\phi_0 \in \mathbb{R}$.

4 Bertrand Curves In The Lorentzian Heis³

Definition 4.1. A curve $\gamma: I \longrightarrow Heis^3$ with $\kappa \neq 0$ is called a Bertrand curve if there exist a curve $\widetilde{\gamma}: I \longrightarrow Heis^3$ such that the principal normal lines of γ and $\widetilde{\gamma}$ at $s \in I$ are equal. In this case $\widetilde{\gamma}$ is called a Bertrand mate of γ .

Theorem 4.2. Let $\gamma: I \longrightarrow Heis^3$ be a Bertrand curve. A Bertrand mate of γ is as follows:

$$\widetilde{\gamma}(s) = \gamma(s) + \lambda \mathbf{N}(s), \quad \forall s \in I,$$
(4.1)

where λ is constant.

Proof. Using Definition 4.1 we have (4.1).

Theorem 4.3. Let $\gamma: I \longrightarrow Heis^3$ be a unit speed timelike curve. If $\widetilde{\gamma}$ is a Bertrand mate of γ , then angle measurement of this curve between tangent vectors at corresponding points is constant.

Proof. If we show $\left\langle \widetilde{\mathbf{T}}\left(s\right), \mathbf{T}\left(s\right) \right\rangle' = 0$, then the proof is complete.

$$\left\langle \widetilde{\mathbf{T}}(s), \mathbf{T}(s) \right\rangle' = \left\langle \widetilde{\mathbf{T}}'(s), \mathbf{T}(s) \right\rangle + \left\langle \widetilde{\mathbf{T}}(s), \mathbf{T}'(s) \right\rangle
= \left\langle \widetilde{\kappa}(s) \widetilde{v}(s) \widetilde{\mathbf{N}}(s), \mathbf{T}(s) \right\rangle + \left\langle \widetilde{\mathbf{T}}(s), \kappa(s) \mathbf{N}(s) \right\rangle
= \widetilde{\kappa}(s) \widetilde{v}(s) \left\langle \widetilde{\mathbf{N}}(s), \mathbf{T}(s) \right\rangle + \kappa(s) \left\langle \widetilde{\mathbf{T}}(s), \mathbf{N}(s) \right\rangle.$$
(4.2)

Since $\widetilde{\mathbf{N}}(s)$ is parallel to $\mathbf{N}(s)$ and $\mathbf{N}(s) \perp \mathbf{T}(s)$, then

$$\left\langle \widetilde{\mathbf{N}}\left(s\right), \mathbf{T}\left(s\right) \right\rangle = 0.$$
 (4.3)

Since $\widetilde{\mathbf{T}}(s) \perp \widetilde{\mathbf{N}}(s)$ and $\widetilde{\mathbf{N}}(s)$ is parallel to $\mathbf{N}(s)$, then

$$\left\langle \widetilde{\mathbf{T}}\left(s\right), \mathbf{N}\left(s\right) \right\rangle = 0.$$
 (4.4)

Substituting (4.3) and (4.4) in (4.2), we have

$$\left\langle \widetilde{\mathbf{T}}\left(s\right),\mathbf{T}\left(s\right)\right
angle ^{\prime}=0.$$

Hence, the proof is completed.

Theorem 4.4. Let $\gamma: I \longrightarrow Heis^3$ be a non-geodesic timelike biharmonic curve If $\widetilde{\gamma}$ is a Bertrand mate of γ , then the parametric equations of $\widetilde{\gamma}$ is

$$x(s) = \frac{1}{\alpha} \cosh \phi_0 \sinh(\alpha s + \rho) + \lambda \sinh(\alpha s + C) + c_1,$$

$$y(s) = \frac{1}{\alpha} \cosh \phi_0 \cosh(\alpha s + \rho) + \lambda \cosh(\alpha s + C) + c_2,$$

$$z(s) = \sinh \phi_0 s - \frac{1}{2\alpha^2} \left[\cosh \phi_0\right]^2 \sinh 2(\alpha s + \rho) - \frac{\left[\cosh \phi_0\right]^2}{\alpha} s$$

$$-\frac{c_1}{\alpha} \cosh \phi_0 \cosh(\alpha s + \rho) + c_3 - \lambda \cosh(\alpha s + C) \sinh(\alpha s + C),$$

$$(4.5)$$

where $\alpha = \frac{|\kappa|}{\cosh \phi_0} - 2 \sinh \phi_0$, $C = \rho - \arg \cosh \left[\frac{1}{\cosh \phi_0} \left(\kappa \sinh \phi_0 + \tau B_1 \right) \right]$ and $\phi_0, c_1, c_2, c_3, \rho, \lambda \in \mathbb{R}$.

Proof. Let $\gamma(s) = (x(s), y(s), z(s))$ be a biharmonic curve parametrized by arc length. The covariant derivative of the vector field N given by (3.2) is

$$\nabla_{\mathbf{T}}\mathbf{N} = (T_2N_3 - T_3N_2)\mathbf{e}_1 + (N_2' + T_2N_3)\mathbf{e}_2 + (N_3' + T_1N_2)\mathbf{e}_3.$$
(4.6)

The first component of (4.6) is given by

$$\langle \nabla_{\mathbf{T}} \mathbf{N}, \mathbf{e}_1 \rangle = T_2 N_3 - T_3 N_2. \tag{4.7}$$

On the other hand, using Frenet formulas (3.1), we have

$$\langle \nabla_{\mathbf{T}} \mathbf{N}, \mathbf{e}_1 \rangle = \kappa T_1 + \tau B_1.$$
 (4.8)

These, together with (4.7) and (4.8), give

$$\kappa T_1 + \tau B_1 = T_2 N_3 - T_3 N_2.$$

Since γ is parametrized by arc length and using $N_1 = 0$, we can write

$$N(s) = \cosh A(s)\mathbf{e}_2 + \sinh A(s)\mathbf{e}_3. \tag{4.9}$$

We shall take into account $B_1 = \text{constant}$, yields

$$\kappa \sinh \phi_0 + \tau B_1 = \cosh \phi_0 \sinh(\alpha s + \rho) \sinh A(s) - \cosh \phi_0 \cosh(\alpha s + \rho) \cosh A(s).$$

or,

$$\kappa \sinh \phi_0 + \tau B_1 = -\cosh \phi_0 \cosh (\alpha s + \rho - A(s)).$$

Thus, we obtain

$$\cosh(\alpha s + \rho - A(s)) = -\frac{1}{\cosh \phi_0} \left(\kappa \sinh \phi_0 + \tau B_1\right) = \text{constant}. \tag{4.10}$$

From (4.10), we have

$$A(s) = \alpha s + C, (4.11)$$

where

$$C = \rho - \operatorname{arg} \cosh \left[\frac{1}{\cosh \phi_0} \left(\kappa \sinh \phi_0 + \tau B_1 \right) \right].$$

Substituting (4.11) in (4.9), we have

$$\mathbf{N}(s) = \cosh(\alpha s + C) e_2 + \sinh(\alpha s + C) e_3. \tag{4.12}$$

Using (2.1) and (4.1), we get

$$\widetilde{\gamma}(s) = \left(\frac{1}{\alpha}\cosh\phi_0\sinh(\alpha s + \rho) + c_1, \frac{1}{\alpha}\cosh\phi_0\cosh(\alpha s + \rho) + c_2, \\ \sinh\phi_0 s - \frac{1}{2\alpha^2}\left[\cosh\phi_0\right]^2\sinh2(\alpha s + \rho) - \frac{\left[\cosh\phi_0\right]^2}{\alpha}s \\ - \frac{c_1}{\alpha}\cosh\phi_0\cosh(\alpha s + \rho) + c_3) \\ + \lambda(\sinh(\alpha s + C), \cosh(\alpha s + C), -\cosh(\alpha s + C)\sinh(\alpha s + C)),$$

or,

$$\widetilde{\gamma}(s) = \left(\frac{1}{\alpha}\cosh\phi_0\sinh(\alpha s + \rho) + \lambda\sinh(\alpha s + C) + c_1, \right.$$

$$\frac{1}{\alpha}\cosh\phi_0\cosh(\alpha s + \rho) + \lambda\cosh(\alpha s + C) + c_2,$$

$$\sinh\phi_0 s - \frac{1}{2\alpha^2}\left[\cosh\phi_0\right]^2\sinh 2(\alpha s + \rho) - \frac{\left[\cosh\phi_0\right]^2}{\alpha}s$$

$$-\frac{c_1}{\alpha}\cosh\phi_0\cosh(\alpha s + \rho) + c_3 - \lambda\cosh(\alpha s + C)\sinh(\alpha s + C),$$

where c_1, c_2, c_3 are constants of integration.

This implies (4.5). The proof is completed.

References

- [1] K. Arslan, R. Ezentas, C. Murathan and T. Sasahara, Biharmonic submanifolds in 3-dimensional generalized (κ, μ) -manifolds, Internat. J. Math. Math. Sci. 22 (2005), 3575-3586.
- [2] R. Caddeo, S. Montaldo and C. Oniciuc, *Biharmonic submanifolds of* S³, Int. J. Math., 12 (2001), 867-876.
- [3] R. Caddeo, S. Montaldo and P. Piu, *Biharmonic curves on a surface*, Rend. Mat. Appl. 21 (2001), 143-157.
- [4] R. Caddeo, S. Montaldo and C. Oniciuc, *Biharmonic submanifolds in spheres*, Israel J. Math. 130 (2002), 109-123.
- [5] B. Y. Chen and S. Ishikawa, *Biharmonic surfaces in pseudo-Euclidean Spaces*, Mem. Fac. Sci. Kyushu Univ. Ser. A 45(2) (1991), 323-347.
- [6] J. Eells and J. H. Sampson, *Variational theory in fibre bundles*, in: Proc. US-Japan Seminar in Differential Geometry (Kyoto 1965), Nippon Hyoronsha, Tokyo, 1966, pp. 22-33.
- [7] J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics with Special Applications to Particulate Media, Prentice-Hall, New Jersey, 1965.
- [8] J. Inoguchi, Biharmonic curves in Minkowski 3-space, Int. J. Math. Sci. 21 (2003), 1365-1368.
- [9] S. Izumiya and N. Takeuchi, Generic properties of helices and Bertrand curves, Journal of Geometry 74 (2002), 97–109.
- [10] G.Y. Jiang, 2-harmonic isometric immersions between Riemannian manifolds, Chinese Ann. Math. Ser. A 7 (1986), 130-144.
- [11] G.Y. Jiang, 2-harmonic maps and their first and second variational formulas, Chinese Ann. Math. Ser. A 7 (1986), 389-402.
- [12] T. Lamm, Biharmonic map heat flow into manifolds of nonpositive curvature, Calc. Var. 22 (2005), 421-445.

- [13] W. E. Langlois, Slow Viscous Flow, Macmillan, New York; Collier- Macmillan, London, 1964.
- [14] B. O'Neill, Semi-Riemannian Geometry, Academic Press, New York, 1983.
- [15] S. Rahmani, Metriqus de Lorentz sur les groupes de Lie unimodulaires, de dimension trois, Journal of Geometry and Physics 9 (1992), 295-302.
- [16] L. Sario, M. Nakai, C. Wang and L. Chung, Classification theory of Riemannian manifolds. Harmonic, quasiharmonic and biharmonic function, Lecture Notes in Mathematic 605, Springer-Verlag, Berlin-New York, 1977.
- [17] E. Turhan and T. Körpınar: Characterize on the Heisenberg Group with left invariant Lorentzian metric, Demonstratio Mathematica, 42 (2) (2009), 423-428.
- [18] E. Turhan and T. Körpmar: On Characterization Of Timelike Horizontal Biharmonic Curves In The Lorentzian Heisenberg Group Heis³, Zeitschrift für Naturforschung A- A Journal of Physical Sciences, 65a (2010), 641-648.

Talat Körpınar Fırat University, Department of Mathematics 23119, Elazığ, TURKEY e-mail: talatkorpinar@gmail.com

Essin Turhan
Fırat University, Department of Mathematics
23119, Elazığ, TURKEY
e-mail: essin.turhan@gmail.com

Iqbal H. Jebril
Department of Mathematics, King Faisal University
Saudi Arabia
e-mail: iqbal501@yahoo.com