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Abstract

In this paper, we study non-geodesic timelike biharmonic curves and we construct para-
metric equations for Bertrand mate of timelike biharmonic curves in the Lorentzian Heisen-
berg group Heis
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1 Introduction

Bertrand curves discovered by J. Bertrand in 1850 are one of the important and interesting topic

of classical special curve theory. A Bertrand curve is defined as a special curve which shares its

principal normals with another special curve (called Bertrand mate).

On the other hand, Eells and Sampson also envisaged some generalizations and defined bi-

harmonic maps ϕ : (M, g) −→ (N, h) between Riemannian manifolds as critical points of the

bienergy functional

E2 (ϕ) =
1
2

∫

M
|τ (ϕ)|2 vg,

where τ (ϕ) = trace∇dϕ is the tension field of J that vanishes on harmonic maps [6]. The Euler-

Lagrange equation corresponding to E2 is given by the vanishing of the bitension field

τ2 (ϕ) = −J ϕ (τ (ϕ)) = −∆τ (ϕ)− traceRN (dϕ, τ (ϕ)) dϕ, (1.1)

where J ϕ is the Jacobi operator of ϕ . The equation τ2 (f) = 0 is called the biharmonic equation.

Since J ϕ is linear, any harmonic map is biharmonic. Therefore, we are interested in proper

biharmonic maps, that is non-harmonic biharmonic maps.
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In this paper, we study non-geodesic timelike biharmonic curves and we construct parametric

equations for Bertrand mate of timelike biharmonic curves in the Lorentzian Heisenberg group

Heis3.

2 The Lorentzian Heisenberg Group Heis3

The Lorentzian Heisenberg group Heis3 can be seen as the space R3 endowed with the following

multiplication:

(x, y, z)(x, y, z) = (x + x, y + y, z + z − xy + xy).

Heis3 is a three-dimensional, connected, simply connected and 2-step nilpotent Lie group.

The Lorentz metric g is given by

g = −dx2 + dy2 + (xdy + dz)2.

The Lie algebra of Heis3 has an orthonormal basis

e1 =
∂

∂z
, e2 =

∂

∂y
− x

∂

∂z
, e3 =

∂

∂x
, (2.1)

for which we have the Lie products

[e2, e3] = 2e1, [e3, e1] = 0, [e2, e1] = 0, (2.2)

with

g(e1, e1) = g(e2, e2) = 1, g(e3, e3) = −1. (2.3)

Proposition 2.1. For the covariant derivatives of the Levi-Civita connection of the left-

invariant metric g, defined above, the following is true:

∇ =




0 e3 e2

e3 0 e1

e2 −e1 0


 , (2.4)

where the (i, j)-element in the table above equals ∇eiej for our basis

{ek, k = 1, 2, 3} = {e1, e2, e3}.
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We will use the notation

Rabcd = R(ea, eb, ec, ed),

where the indices a, b, c and d take the values 1, 2 and 3.

R1212 = −1, R1313 = 1, R2323 = −3. (2.5)

3 Timelike Biharmonic Curves In The Lorentzian Heis3

Let γ : I −→ Heis3 be a timelike curve on the Lorentzian Heisenberg group Heis3 parametrized

by arc length. Let {T,N,B} be the Frenet frame fields tangent to the Lorentzian Heisenberg

group Heis3 along γ defined as follows:

T is the unit vector field γ′ tangent to γ, N is the unit vector field in the direction of ∇TT

(normal to γ), and B is chosen so that {T,N,B} is a positively oriented orthonormal basis.

Then, we have the following Frenet formulas:

∇TT = κN,
∇TN = κT + τB,
∇TB = −τN,

(3.1)

where κ is the curvature of γ and τ is its torsion. With respect to the orthonormal basis {e1, e2, e3}
we can write

T = T1e1 + T2e2 + T3e3,
N = N1e1 + N2e2 + N3e3,
B = T×N = B1e1 + B2e2 + B3e3.

(3.2)

Lemma 3.1. (see [18]) Let γ : I −→ Heis3 be a non-geodesic timelike curve on the Lorentzian

Heisenberg group Heis3 parametrized by arc length. γ is biharmonic if and only if

κ = constant 6= 0,
τ = constant,

N1B1 = 0,
κ2 − τ2 = −1 + 4B2

1 .

(3.3)
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Theorem 3.2. (see [18]) Let γ : I −→ Heis3 be a non-geodesic timelike biharmonic curve

on the Lorentzian Heisenberg group Heis3 parametrized by arc length. If N1 = 0, then

T(s) = sinhφ0e1 + coshφ0 sinhψ(s)e2 + coshφ0 coshψ(s)e3, (3.4)

where φ0 ∈ R.

4 Bertrand Curves In The Lorentzian Heis3

Definition 4.1. A curve γ : I −→ Heis3 with κ 6= 0 is called a Bertrand curve if there exist a

curve γ̃ : I −→ Heis3 such that the principal normal lines of γ and γ̃ at s ∈ I are equal. In

this case γ̃ is called a Bertrand mate of γ.

Theorem 4.2. Let γ : I −→ Heis3 be a Bertrand curve. A Bertrand mate of γ is as follows:

γ̃ (s) = γ (s) + λN (s) , ∀s ∈ I, (4.1)

where λ is constant.

Proof. Using Definition 4.1 we have (4.1).

Theorem 4.3. Let γ : I −→ Heis3 be a unit speed timelike curve. If γ̃ is a Bertrand mate

of γ, then angle measurement of this curve between tangent vectors at corresponding points is

constant.

Proof. If we show
〈
T̃ (s) ,T (s)

〉′
= 0, then the proof is complete.

〈
T̃ (s) ,T (s)

〉′
=

〈
T̃′ (s) ,T (s)

〉
+

〈
T̃ (s) ,T′ (s)

〉

=
〈
κ̃ (s) ṽ (s) Ñ (s) ,T (s)

〉
+

〈
T̃ (s) , κ (s)N (s)

〉

= κ̃ (s) ṽ (s)
〈
Ñ (s) ,T (s)

〉
+ κ (s)

〈
T̃ (s) ,N (s)

〉
.

(4.2)

Since Ñ (s) is parallel to N (s) and N (s) ⊥ T (s), then
〈
Ñ (s) ,T (s)

〉
= 0. (4.3)
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Since T̃ (s) ⊥ Ñ (s) and Ñ (s) is parallel to N (s), then
〈
T̃ (s) ,N (s)

〉
= 0. (4.4)

Substituting (4.3) and (4.4) in (4.2), we have
〈
T̃ (s) ,T (s)

〉′
= 0.

Hence, the proof is completed.

Theorem 4.4. Let γ : I −→ Heis3 be a non-geodesic timelike biharmonic curve If γ̃ is a

Bertrand mate of γ, then the parametric equations of γ̃ is

x(s) = 1
α coshφ0 sinh(αs + ρ) + λ sinh (αs + C) + c1,

y(s) = 1
α coshφ0 cosh(αs + ρ) + λ cosh (αs + C) + c2,

z(s) = sinhφ0s− 1
2α2 [coshφ0]

2 sinh 2(αs + ρ)− [cosh φ0]2

α s
− c1

α coshφ0 cosh(αs + ρ) + c3 − λ cosh (αs + C) sinh (αs + C)),

(4.5)

where α = |κ|
cosh φ0

−2 sinh φ0, C = ρ−arg cosh
[

1
cosh φ0

(κ sinhφ0 + τB1)
]
and φ0, c1, c2, c3, ρ, λ ∈ R.

Proof. Let γ(s) = (x(s), y(s), z(s)) be a biharmonic curve parametrized by arc length. The

covariant derivative of the vector field N given by (3.2) is

∇TN = (T2N3 − T3N2) e1 +
(
N ′

2 + T2N3

)
e2 +

(
N ′

3 + T1N2

)
e3. (4.6)

The first component of (4.6) is given by

< ∇TN, e1 >= T2N3 − T3N2. (4.7)

On the other hand, using Frenet formulas (3.1), we have

< ∇TN, e1 >= κT1 + τB1. (4.8)

These, together with (4.7) and (4.8), give

κT1 + τB1 = T2N3 − T3N2.
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Since γ is parametrized by arc length and using N1 = 0, we can write

N (s) = coshA(s)e2 + sinhA(s)e3. (4.9)

We shall take into account B1 =constant, yields

κ sinhφ0 + τB1 = coshφ0 sinh(αs + ρ) sinh A(s)

− coshφ0 cosh(αs + ρ) cosh A(s),

or,

κ sinhφ0 + τB1 = − coshφ0 cosh (αs + ρ−A(s)) .

Thus, we obtain

cosh (αs + ρ−A(s)) = − 1
coshφ0

(κ sinhφ0 + τB1) = constant. (4.10)

From (4.10), we have

A(s) = αs + C, (4.11)

where

C = ρ− arg cosh
[

1
coshφ0

(κ sinhφ0 + τB1)
]

.

Substituting (4.11) in (4.9), we have

N (s) = cosh (αs + C) e2 + sinh (αs + C) e3. (4.12)

Using (2.1) and (4.1), we get

γ̃ (s) = (
1
α

coshφ0 sinh(αs + ρ) + c1,
1
α

coshφ0 cosh(αs + ρ) + c2,

sinhφ0s− 1
2α2

[coshφ0]
2 sinh 2(αs + ρ)− [coshφ0]

2

α
s

−c1

α
coshφ0 cosh(αs + ρ) + c3)

+λ(sinh (αs + C) , cosh (αs + C) ,− cosh (αs + C) sinh (αs + C)),

or,

γ̃ (s) = (
1
α

coshφ0 sinh(αs + ρ) + λ sinh (αs + C) + c1,

1
α

coshφ0 cosh(αs + ρ) + λ cosh (αs + C) + c2,

sinhφ0s− 1
2α2

[coshφ0]
2 sinh 2(αs + ρ)− [coshφ0]

2

α
s

−c1

α
coshφ0 cosh(αs + ρ) + c3 − λ cosh (αs + C) sinh (αs + C)),
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where c1, c2, c3 are constants of integration.

This implies (4.5). The proof is completed.
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