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Abstract

In this paper, we study spacelike biharmonic general helices in the Lorentzian group of
rigid motions E(2). We characterize the spacelike biharmonic general helices in terms of their
curvature and torsion in the Lorentzian group of rigid motions E(2).
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1 Introduction

The theory of biharmonic functions is an old and rich subject. Biharmonic functions have been

studied since 1862 by Maxwell and Airy to describe a mathematical model of elasticity. The

theory of polyharmonic functions was developed later on, for example, by Almansi, Levi-Civita

and Nicolescu.

Firstly, harmonic maps are given as follows:

Harmonic maps f : (M, g) −→ (N, h) between Riemannian manifolds are the critical points

of the energy

E (f) =
1
2

∫

M
|df |2 vg, (1.1)

and they are therefore the solutions of the corresponding Euler–Lagrange equation. This equation

is given by the vanishing of the tension field

τ (f) = trace∇df. (1.2)

Secondly, biharmonic maps are given as follows:
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As suggested by Eells and Sampson in [4], we can define the bienergy of a map f by

E2 (f) =
1
2

∫

M
|τ (f)|2 vg, (1.3)

and say that is biharmonic if it is a critical point of the bienergy.

Jiang derived the first and the second variation formula for the bienergy in [5], showing that

the Euler–Lagrange equation associated to E2 is

τ2 (f) = −J f (τ (f)) = −∆τ (f)− traceRN (df, τ (f)) df
= 0,

(1.4)

where J f is the Jacobi operator of f . The equation τ2 (f) = 0 is called the biharmonic

equation. Since J f is linear, any harmonic map is biharmonic.

In this paper, we study spacelike biharmonic general helices in the Lorentzian group of rigid

motions E(2). We characterize the spacelike biharmonic general helices in terms of their curvature

and torsion in the Lorentzian group of rigid motions E(2).

2 The Group of Rigid Motions E(2)

Let E(2) be the group of rigid motions of Euclidean 2-space. This consists of all matrices of the

form



cosx − sinx y
sinx cosx z

0 0 1


 .

Topologically, E(2) is diffeomorphic to S1 × R2 under the map

E(2) −→ S1 × R2 :




cos[x] − sin[x] y
sin[x] cos[x] z

0 0 1


 −→ ([x] , y, z) ,

where [x] means x modulo 2πz. It’s Lie algebra has a basis consisting of

e1 =
∂

∂x
, e2 = cosx

∂

∂y
+ sin x

∂

∂z
, e3 = − sinx

∂

∂y
+ cosx

∂

∂z
, (2.1)

[9] and coframe

θ1 = dx, θ2 = cosxdy + sin xdz, θ3 = − sinxdy + cosxdz.
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It is easy to check that the metric g is given by

g =
(
θ1

)2 +
(
θ2

)2 − (
θ3

)2
. (2.2)

The bracket relations are

[e1, e2] = e3, [e2, e3] = 0, [e3, e1] = e2.

Proposition 2.1. For the covariant derivatives of the Levi-Civita connection of the left-

invariant metric g, defined above the following is true:

∇ =




0 0 0
−e3 0 −e1

e2 −e1 0


 , (2.3)

where the (i, j)-element in the table above equals ∇eiej for our basis

{ek, k = 1, 2, 3} = {e1, e2, e3}.

We adopt the following notation and sign convention for Riemannian curvature operator:

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z.

The Riemannian curvature tensor is given by

R(X,Y, Z, W ) = g(R(X,Y )W,Z).

Moreover we put

Rijk = R(ei, ej)ek, Rijkl = R(ei, ej , ek, el),

where the indices i, j, k and l take the values 1, 2 and 3.

R121 = −e2, R131 = −e3, R232 = e3 (2.4)

and

R1212 = 1, R1313 = −1, R2323 = 1. (2.5)
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3 Spacelike Biharmonic General Helices with Timelike Normal in
the Lorentzian Group of Rigid Motions E(2)

Let γ : I −→ E(2) be a non geodesic spacelike curve with timelike normal in the group of rigid

motions E(2) parametrized by arc length. Let {t,n,b} be the Frenet frame fields tangent to the

group of rigid motions E(2). along γ defined as follows:

t is the unit vector field γ′ tangent to γ, n is the unit vector field in the direction of ∇tt

(normal to γ) and b is chosen so that {t,n,b} is a positively oriented orthonormal basis. Then,

we have the following Frenet formulas:

∇t(s)t (s) = κ (s)n (s) ,

∇t(s)n (s) = κ (s) t (s) + τ (s)b (s) ,

∇t(s)b (s) = τ (s)n (s) ,
(3.1)

where κ (s) = |τ(γ)| = |∇t(s)t (s) | is the curvature of γ, τ (s) is its torsion and

g (t (s) , t (s)) = 1, g (n (s) ,n (s)) = −1, g (b (s) ,b (s)) = 1,
g (t (s) ,n (s)) = g (t (s) ,b (s)) = g (n (s) ,b (s)) = 0.

(3.2)

With respect to the orthonormal basis {e1, e2, e3} we can write

t (s) = t1 (s) e1 + t2 (s) e2 + t3 (s) e3,
n (s) = n1 (s) e1 + n2 (s) e2 + n3 (s) e3,
b (s) = t (s)×n (s) = b1 (s) e1 + b2 (s) e2 + b3 (s) e3.

(3.3)

Theorem 3.1. γ : I −→ E(2) is a non geodesic spacelike biharmonic curve with timelike

normal in the Lorentzian group of rigid motions E(2) if and only if

κ (s) = constant 6= 0,
κ2 (s) + τ2 (s) = 1− 2b2

1 (s) ,
τ ′ (s) = 2n1 (s) b1 (s) .

(3.4)

Proof. Using (3.1), we have

τ2(γ) = ∇3
tt (s) + κ (s) R(t (s) ,n (s) )t (s)

= (3κ′1 (s)κ (s))t (s) + (κ′′ (s) + κ3 (s) + κ (s) τ2 (s))n (s)

+(2τ (s)κ′ (s) + κ (s) τ ′ (s))b (s) + κ (s) R(t (s) ,n (s) )t (s) .
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By (1.1), we see that γ is a unit speed spacelike biharmonic curve with timelike normal if and

only if

κ (s) κ′ (s) = 0,
κ′′ (s) + κ3 (s) + κ (s) τ2 (s) = −κ (s) R(t (s) ,n (s) , t (s) ,n (s)),
2τ (s) κ′ (s) + τ ′ (s)κ (s) = −κ (s) R(t (s) ,n (s) , t (s) ,b (s)).

(3.5)

Since κ 6= 0 by the assumption that is non-geodesic

κ (s) = constant 6= 0,
κ2 (s) + τ2 (s) = −R(t (s) ,n (s) , t (s) ,n (s)),
τ ′ (s) = −R(t (s) ,n (s) , t (s) ,b (s)).

(3.6)

A direct computation using (2.5), yields

R(t (s) ,n (s) , t (s) ,n (s)) = −1 + 2b2
1 (s) ,

R(t (s) ,n (s) , t (s) ,b (s)) = −2n1 (s) b1 (s) .
(3.7)

These, together with (3.6), complete the proof of the theorem.

If we write this curve in the another parametric representation γ = γ (θ), where θ =∫ s
0 κ (s) ds. We have new Frenet equations as follows:

∇t(θ)t (θ) = n (θ) ,

∇t(θ)n (θ) = t (θ) + f (θ)b (θ) ,

∇t(θ)b (θ) = f (θ)n (θ) ,
(3.8)

where f (θ) = τ(θ)
κ(θ) .

If we write {t(θ),n(θ),b(θ)} with respect to the orthonormal basis {e1, e2, e3} as following:

t(θ) = t1 (θ) e1 + t2 (θ) e2 + t3 (θ) e3,
n (θ) = n1 (θ) e1 + n2 (θ) e2 + n3 (θ) e3,
b (θ) = t (θ)× n (θ) = b1 (θ) e1 + b2 (θ) e2 + b3 (θ) e3.

(3.9)

Theorem 3.2. Let γ : I −→ E(2) is a non geodesic spacelike biharmonic general helix with

timelike normal in the Lorentzian group of rigid motions E(2). Then, the parametric equations of

γ are
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x (θ) = cos℘θ + a1,

y (θ) = sin ℘
cos2 ℘+Ξ2

1
((cos℘− Ξ1) sin [cos℘θ + a1] cosh [Ξ1θ + Ξ2]

+ (cos℘ + Ξ1) cos [cos℘θ + a1] sinh [Ξ1θ + Ξ2]) + a2,

z (θ) = sin ℘
cos2 ℘+Ξ2

1
((Ξ1 − cos℘) cos [cos℘θ + a1] cosh [Ξ1θ + Ξ2]

+ (cos℘ + Ξ1) sin [cos℘θ + a1] sinh [Ξ1θ + Ξ2]) + a3,

(3.10)

where a1, a2, a3, Ξ1, Ξ2 are constants of integration and ℘ is constant angle.

Proof. Suppose that γ is a non geodesic spacelike biharmonic curve. Substituting the first

equation of the Frenet equations (3.8) in the second equation of (3.8), we obtain

b (θ) =
1

f (θ)

[
∇2

t(s)t (θ)− t (θ)
]
. (3.11)

Using the last equation of (3.8), we obtain

∇3
t(s)t (θ)− (

1 + f2 (θ)
)∇t(s)t (θ) = 0. (3.12)

Since the curve γ (θ) is a spacelike general helix, i.e. the tangent vector t (θ) makes a constant

angle ℘, with the constant spacelike vector called the axis of the general helix. So, without loss of

generality, we take the axis of a general helix as being parallel to the spacelike vector e1. Then,

using first equation of (3.9), we get

t1 (θ) = g (t(θ), e1) = cos ℘. (3.13)

On other hand, the tangent vector T(θ) is a unit spacelike vector, so the following condition

is satisfied:

t22 (θ)− t23 (θ)=1− cos2 ℘. (3.14)

The general solution of (3.14) can be written in the following form:

t2 (θ) = sin℘ coshσ (θ) ,
t3 (θ) = sin℘ sinhσ (θ) ,

(3.15)

where σ is an arbitrary function of θ.
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So, substituting the components t1(θ), t2(θ) and t3(θ) in the first equation of (3.9), we have

the following equation

t = cos℘e1 + sin℘ coshσ (θ) e2 + sin℘ sinhσ (θ) e3. (3.16)

If we substitute (3.5) in (3.12), we have

σ′ (θ) σ′′ (θ) = 0. (3.17)

The general solution of (3.17) is

σ (θ) = Ξ1θ + Ξ2, (3.18)

where Ξ1, Ξ2 are constants of integration.

Thus (3.16) and (3.18), imply

t = cos℘e1 + sin ℘ cosh [Ξ1θ + Ξ2] e2 + sin℘ sinh [Ξ1θ + Ξ2] e3. (3.19)

Using (2.1) in (3.19), we obtain

t = (cos℘, cos [cos℘θ + a1] sin ℘ cosh [Ξ1θ + Ξ2]
− sin [cos℘θ + a1] sin ℘ sinh [Ξ1θ + Ξ2] ,
sin [cos℘θ + a1] sin ℘ cosh [Ξ1θ + Ξ2]
+ cos [cos ℘θ + a1] sin℘ sinh [Ξ1θ + Ξ2]),

(3.20)

where a1 is constant of integration.

Also, we have

dx
dθ = cos℘,
dy
dθ = cos [cos℘θ + a1] sin ℘ cosh [Ξ1θ + Ξ2]

− sin [cos ℘θ + a1] sin℘ sinh [Ξ1θ + Ξ2] ,
dz
dθ = sin [cos℘θ + a1] sin℘ cosh [Ξ1θ + Ξ2]

+ cos [cos℘θ + a1] sin℘ sinh [Ξ1θ + Ξ2] .

(3.21)

If we take the integral (3.21), we get (3.10). Thus, the proof is completed.

Theorem 3.3. Let γ : I −→ E(2) is a non geodesic spacelike biharmonic general helix with

timelike normal in the Lorentzian group of rigid motions E(2). Then, the parametric equations of
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γ are

x1 (s) = cos℘κs + a1,

x2 (s) = sin ℘
cos2 ℘+Ξ2

1
((cos℘− Ξ1) sin [cos℘κs + a1] cosh [Ξ1κs + Ξ2]

+ (cos℘ + Ξ1) cos [cos℘κs + a1] sinh [Ξ1κs + Ξ2]) + a2,

x3 (s) = sin ℘
cos2 ℘+Ξ2

1
((Ξ1 − cos℘) cos [cos℘κs + a1] cosh [Ξ1κs + Ξ2]

+ (cos℘ + Ξ1) sin [cos℘κs + a1] sinh [Ξ1κs + Ξ2]) + a3,

(3.22)

where a1, a2, a3 are constants of integration.

Proof. From first equation of (3.4) and the definition of θ, we have

θ = κs. (3.23)

So, substituting (3.23) in the system (3.10), we have (3.22) and the assertion is proved.
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