

Química inorgánica i CQQ261

TÉRMINO FUNDAMENTAL RUSSELL-SAUNDERS (ESTADO R-S)

Por Trino Suárez B

REGLAS PARA ESCRIBIR EL TÉRMINO FUNDAMENTAL RUSSELL-SAUNDERS (ESTADO R-S)

Un término Russell-Saunders se escribe de la siguiente manera: ^{2S+1}L_j; donde **2S+1** es la multiplicidad de spin, L es el símbolo del término y **j** un número cuántico.

- 1) Escribir la configuración electrónica de los subniveles incompletos.
- 2) Listar horizontalmente los valores de m_I, empezando de izquierda a derecha por el valor mas alto.
- 3) Llenar los orbitales representados en el paso anterior según la regla de Hund y el principio de exclusión de Paulig.
- 4) Determinar el valor de $M_1 = \Sigma I_i = L$ y asociarle el símbolo correspondiente:

M_L	L
0	S P
1	Р
2	D
2 3 4 5	F
4	G
5	I
6	
7 8	K
8	М

- 5) Determinar el valor de $M_S = \Sigma m_s = S$
- 6) Determinar la multiplicidad de spin (2S+1)

REGLAS DE HUND

- 1) El estado R-S mas estable es el de mayor multiplicidad de spin.
- 2) Si un grupo de estados tienen la misma multiplicidad de spin, el estado mas estable será aquél que tenga el mayor valor de L.
- 3) Si dos o mas estados tienen igual valor de **L y S** el menor valor de **j** será el mas estable si el referido nivel esté menos que semilleno; si el nivel es mas que semilleno el estado mas estable será el de mayor valor de **j**.

Ejemplo 1) Determine el término que corresponde al estado fundamental para el átomo de oxígeno en su estado fundamental.

1)
$$2p^4$$

2) $m_l = 1$ 0 -1
3) $\uparrow \downarrow$ \uparrow \uparrow
4) $M_L = \Sigma I_i = 1 \Rightarrow Estado P$
5) $M_S = \Sigma m_S = 1$

6)
$$2S+1=3 \Rightarrow {}^{3}P$$

7)
$$j = 2, 1, 0. \Rightarrow {}^{3}\mathbf{P_{2}}$$
 (mayor valor de j, mas que semilleno)

Ejemplo 2) Determine el término que corresponde al estado fundamental para el átomo de gadolinio en su estado fundamental.

6)
$$2S+1 = 9 \Rightarrow {}^{3}D$$

7)
$$j = L - S = |2-4| = 2 \Rightarrow {}^{9}D_{2}$$
 (menos que semilleno)

Ejercicio 1) Determine el término R-S que corresponde al estado fundamental de las siguientes especies:

Ejercicio 2) Determine los términos R-S que corresponden al estado fundamental y estados excitados de las siguientes especies:

Ejercicio 3) Muestre que para el ion Cr(III), el término que corresponde al estado fundamental es ${}^4F_{5/2}$

Ejercicio 4) Encuentre los términos R-S que corresponden al estado fundamental y excitado de las siguientes configuraciones: