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Abstract

In this paper, we study biharmonic curves in the special three-dimensional φ−Ricci Sym-
metric Para-Sasakian Manifold P. Moreover, we construct matrix representation of bihar-
monic curves in terms of exponential maps in the special three-dimensional φ−Ricci symmet-
ric para-Sasakian manifold P. Finally we obtain Frenet equations of biharmonic curves in
terms of exponential maps in the special three-dimensional φ−Ricci symmetric para-Sasakian
manifold P.
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1 Introduction

Differential geometry of curves is the branch of geometry that deals with smooth curves by

methods of differential and integral calculus.

Starting in antiquity, many concrete curves have been thoroughly investigated using the

synthetic approach. Differential geometry takes another path: curves are represented in a

parametrized form, and their geometric properties and various quantities associated with them,

such as the curvature and the arc length, are expressed via derivatives and integrals using vector

calculus. One of the most important tools used to analyze a curve is the Frenet frame, a moving

frame that provides a coordinate system at each point of the curve that is "best adapted" to the

curve near that point.

The theory of curves is much simpler and narrower in scope than the theory of surfaces and its

higher-dimensional generalizations, because a regular curve in a Euclidean space has no intrinsic
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geometry. Any regular curve may be parametrized by the arc length (the natural parametrization)

and from the point of view of a bug on the curve that does not know anything about the ambient

space, all curves would appear the same. Different space curves are only distinguished by the

way in which they bend and twist. Quantitatively, this is measured by the differential-geometric

invariants called the curvature and the torsion of a curve. The fundamental theorem of curves

asserts that the knowledge of these invariants completely determines the curve.

In this paper, we study biharmonic curves in the special three-dimensional φ−Ricci symmetric

para-Sasakian manifold P. Moreover, we construct matrix representation of biharmonic curves

in terms of exponential maps in the special three-dimensional φ−Ricci symmetric para-Sasakian

manifold P. Finally we obtain Frenet equations of biharmonic curves in terms of exponential

maps in the special three-dimensional φ−Ricci symmetric para-Sasakian manifold P.

2 Preliminaries

An n-dimensional differentiable manifold M is said to admit an almost para-contact Riemannian

structure (φ, ξ, η, g), where φ is a (1, 1) tensor field, ξ is a vector field, η is a 1-form and g is a

Riemannian metric on M such that

φξ = 0, η (ξ) = 1, g (X, ξ) = η (X) , (2.1)

φ2 (X) = X − η (X) ξ, (2.2)

g (φX, φY ) = g (X, Y )− η (X) η (Y ) , (2.3)

for any vector fields X, Y on M .

In addition, if (φ, ξ, η, g), satisfy the equations

dη = 0, ∇Xξ = φX, (2.4)

(∇Xφ)Y = −g (X, Y ) ξ − η (Y )X + 2η (X) η (Y ) ξ, X, Y ∈ χ (M) , (2.5)

then M is called a para-Sasakian manifold or, briefly a P−Sasakian manifold [2].

Definition 2.1. A para-Sasakian manifold M is said to be locally φ-symmetric if

φ2 ((∇W R) (X, Y ) Z) = 0,
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for all vector fields X, Y, Z, W orthogonal to ξ. This notion was introduced by Takahashi [16],

for a Sasakian manifold.

Definition 2.2. A para-Sasakian manifold M is said to be φ-symmetric if

φ2 ((∇W R) (X, Y ) Z) = 0,

for all vector fields X,Y, Z, W on M.

Definition 2.3. A para-Sasakian manifold M is said to be φ-Ricci symmetric if the Ricci

operator satisfies

φ2 ((∇XQ) (Y )) = 0,

for all vector fields X and Y on M and S(X, Y ) = g(QX,Y ).

If X, Y are orthogonal to ξ, then the manifold is said to be locally φ-Ricci symmetric.

We consider the three-dimensional manifold

P =
{(

x1, x2, x3
) ∈ R3 :

(
x1, x2, x3

) 6= (0, 0, 0)
}

,

where
(
x1, x2, x3

)
are the standard coordinates in R3. We choose the vector fields

e1 = ex1 ∂

∂x2
, e2 = ex1

(
∂

∂x2
− ∂

∂x3

)
, e3 = − ∂

∂x1
(2.6)

are linearly independent at each point of P.

Let η be the 1-form defined by

η(Z) = g(Z, e3) for any Z ∈ χ(P).

Let be the (1,1) tensor field defined by

φ(e1) = e2, φ(e2) = e1, φ(e3) = 0.

Then using the linearity of and g we have

η(e3) = 1,

φ2(Z) = Z − η(Z)e3,
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g (φZ, φW ) = g (Z, W )− η(Z)η(W ),

for any Z, W ∈ χ(P). Thus for e3 = ξ, (φ, ξ, η, g) defines an almost para-contact metric structure

on P, [2].

Let ∇ be the Levi-Civita connection with respect to g. Then, we have

[e1, e2] = 0, [e1, e3] = e1, [e2, e3] = e2.

Taking e3 = ξ and using the Koszul’s formula, we obtain

∇e1e1 = −e3, ∇e1e2 = 0, ∇e1e3 = e1,

∇e2e1 = 0, ∇e2e2 = −e3, ∇e2e3 = e2,

∇e3e1 = 0, ∇e3e2 = 0, ∇e3e3 = 0.
(2.7)

Moreover we put

Rijk = R(ei, ej)ek, Rijkl = R(ei, ej , ek, el),

where the indices i, j, k and l take the values 1, 2 and 3.

R122 = −e1,, R133 = −e1,, R233 = −e2,

and

R1212 = R1313 = R2323 = 1. (2.8)

3 New Approach for Biharmonic Curves in P

A map

exp : R× P3
3 → GL (3,R) ⊂ P3

3, (t,A) → exp (t,A) =
∞∑

k=0

tk

k!
Ak

is called exponential map in Para-Sasakian Manifold P.
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Definition 3.1. 〈A,B〉P = trace
(ABT

)
is called an inner product for A,B ∈P3

3.

Firstly, let us calculate the arbitrary parameter t according to the arclength parameter s. It

is well known that

s =
∫ t

0

∥∥γ′ (t)
∥∥
P dt, (3.1)

where

γ′ (t) = Aγ. (3.2)

The norm of Equation (3.1), we obtain

‖Aγ‖P =
√
−trace (A2).

Substituting above equation in (3.1), we have

s =
√
−trace (A2)t

Lemma 3.2. Let A be a be an anti-symmetric matrix and n ∈ N. Then,

i) If n is odd, An is an anti-symmetric matrix.

ii) If n is even, An is a symmetric matrix.

iii) The trace of an anti-symmetric matrix is zero.

The first, second and third derivatives of γ are given as follows:

γ′ (s) =
Aγ√

−trace (A2)
, γ′′ (s) =

A2γ(√
−trace (A2)

)2 , γ′′′ (s) =
A3γ(√

−trace (A2)
)3 . (3.3)

4 New Frenet Frame of Biharmonic Curves in terms of Usual
Frenet Vectors in the Special Three-Dimensional φ−Ricci Sym-
metric Para-Sasakian Manifold P

Using above sections we obtain following results.



182 Talat KÖRPINAR, Essin TURHAN and Vedat ASİL

Theorem 4.1. (see [12]) Let γ : I −→ P be a unit speed non-geodesic biharmonic curve in

the special three-dimensional φ−Ricci symmetric para-Sasakian manifold P. Then,

Aγ =
√
−trace (A2)(− cosϕ, sinϕe−s cos ϕ+C1 (sin [ks + C] + cos [ks + C]) ,

sinϕe−s cos ϕ+C1 sin [ks + C]),

A2γ =

(√
trace(A4)

)

κ (− sin2 ϕ
2 s2 + C1s + C2,

e−
sin2 ϕ

2
s2+C1s+C2 (k sinϕ sin [ks + C] + cosϕ sinϕ cos [ks + C])

+e−
sin2 ϕ

2
s2+C1s+C2 (−k sinϕ cos [ks + C] + cosϕ sinϕ sin [ks + C]) ,

−e−
sin2 ϕ

2
s2+C1s+C2 (−k sinϕ cos [ks + C] + cosϕ sinϕ sin [ks + C])),

(4.1)

A3γ =
1
κ

[
trace

(A6
)

(√
−trace (A2)

)3 −
(
trace

(A4
))2

(√
−trace (A2)

)2 ]
1
2 (− sinϕe−s cos ϕ+C1(sin [ks + C]

+ cos [ks + C])e−
sin2 ϕ

2
s2+C1s+C2 .(−k sinϕ cos [ks + C] + cosϕ sinϕ sin [ks + C])

− sinϕe−s cos ϕ+C1 sin [ks + C] e−
sin2 ϕ

2
s2+C1s+C2(k sinϕ sin [ks + C] +

+ cos ϕ sinϕ cos [ks + C])

+ (−k sinϕ cos [ks + C] + cosϕ sinϕ sin [ks + C])),

(−sin2 ϕ

2
s2 + C1s + C2) sinϕe−s cos ϕ+C1 sin [ks + C]

− cosϕe−
sin2 ϕ

2
s2+C1s+C2 (−k sinϕ cos [ks + C] + cosϕ sinϕ sin [ks + C]) ,

− cosϕe−
sin2 ϕ

2
s2+C1s+C2((k sinϕ sin [ks + C] + cosϕ sinϕ cos [ks + C])

+ (−k sinϕ cos [ks + C] + cosϕ sinϕ sin [ks + C]))

− sinϕe−s cos ϕ+C1 (sin [ks + C] + cos [ks + C]) (−sin2 ϕ

2
s2 + C1s + C2)

− trace
(A4

)
(√

−trace (A2)
)(− cosϕ, sinϕex1

(sin [ks + C] + cos [ks + C]) , sinϕex1
sin [ks + C]),

where C, C1, C2 are constants of integration and k =
√

κ2−sin2 ϕ
sin ϕ .

In the light of Theorem 4.1, we also give the following theorems :
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Theorem 4.2. Let γ : I −→ P be a unit speed non-geodesic biharmonic curve in the special

three-dimensional φ−Ricci symmetric para-Sasakian manifold P. Then the new Frenet equations

of this curve are

∇TT = − A2γ
trace(A2)

,

∇TN= A3γ√
−trace(A2)

√
trace(A4)

,

∇TB = [
trace(A6)(√
−trace(A2)

)6 − (trace(A4))2

(√
−trace(A2)

)5 ]−
1
2 [ A4γ(√

−trace(A2)
)4

+
trace(A4)(√
−trace(A2)

)6A2γ].

(4.2)

Proof. We assume that γ is a unit speed non-geodesic biharmonic curve in the special

three-dimensional φ−Ricci symmetric para-Sasakian manifold P.

From the proof of above Theorem we obtain

T =
Aγ√

−trace (A2)
(4.3)

So, by differentiating of the formula (13), we get

∇TT = − A2γ

trace (A2)
.

Also, we have the principal normal of the curve

N =
A2γ√

trace (A4)
. (4.4)

Differentiating of the formula (4.4), we get

∇TN =
A2γ′√

trace (A4)
.

Using (4.3) in above equation, we have

∇TN =
A3γ√

−trace (A2)
√

trace (A4)
.

Finally, the same above method we will find ∇TB. We have the binormal of the curve

B =[
trace

(A6
)

(√
−trace (A2)

)6 −
(
trace

(A4
))2

(√
−trace (A2)

)5 ]−
1
2 [

A3γ(√
−trace (A2)

)3 +
trace

(A4
)

(√
−trace (A2)

)5Aγ].

(4.5)
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Also, by differentiating of the formula (4.5), we get

∇TB =[
trace

(A6
)

(√
−trace (A2)

)6 −
(
trace

(A4
))2

(√
−trace (A2)

)5 ]−
1
2 [

A3γ′(√
−trace (A2)

)3 +
trace

(A4
)

(√
−trace (A2)

)5Aγ′].

Since, we have

∇TB = [
trace

(A6
)

(√
−trace (A2)

)6 −
(
trace

(A4
))2

(√
−trace (A2)

)5 ]−
1
2 [

A3

(√
−trace (A2)

)3

Aγ√
−trace (A2)

+
trace

(A4
)

(√
−trace (A2)

)5A
Aγ√

−trace (A2)
].

So we immediately arrive at

∇TB = [
trace

(A6
)

(√
−trace (A2)

)6 −
(
trace

(A4
))2

(√
−trace (A2)

)5 ]−
1
2 [

A4γ(√
−trace (A2)

)4

+
trace

(A4
)

(√
−trace (A2)

)6A2γ].

This completes the proof of the theorem.

In the light of Theorem 4.1 and Theorem 4.2, we express the following corollary without

proof:

Corollary 4.3. Let γ : I −→ P be a unit speed non-geodesic biharmonic curve in the special

three-dimensional φ−Ricci symmetric para-Sasakian manifold P. Then

A4γ = −[

(√
−trace(A2)

)4
τ√

trace(A4)
[

trace(A6)(√
−trace(A2)

)6 − (trace(A4))2

(√
−trace(A2)

)5 ]
1
2

−trace
(A4

) (√
−trace (A2)

)−2
]

(√
trace(A4)

)

κ (− sin2 ϕ
2 s2 + C1s + C2,

e−
sin2 ϕ

2
s2+C1s+C2 (k sinϕ sin [ks + C] + cosϕ sinϕ cos [ks + C])

+e−
sin2 ϕ

2
s2+C1s+C2 (−k sinϕ cos [ks + C] + cosϕ sinϕ sin [ks + C]) ,

−e−
sin2 ϕ

2
s2+C1s+C2 (−k sinϕ cos [ks + C] + cosϕ sinϕ sin [ks + C])),

(4.6)

where C, C1, C2 are constants of integration and k =
√

κ2−sin2 ϕ
sin ϕ .
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