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ABSTRACT The synthesis, structural characterization and magnetic properties of the alloy system
CuAl1−xCrxS2 (x = 0.10 and x = 0.20) is reported. Both samples were synthesized using the direct fu-
sion technique. Chemical analysis (EDX) confirmed the stoichiometric ratio for both concentrations. The
powder diffraction patterns were indexed, and both principal phases crystallize with tetragonal symmetry and
unit cell parameters a = 5.3317(1) Å, c = 10.4059(2) Å for x = 0.10 and a = 5.3331(1) Å, c = 10.4117(2) Å
for x = 0.20. These materials are isomorphic with the chalcopyrite structure that crystallizes in the space
group I42d. The system behaves paramagnetic for x = 0.10 and antiferromagnetic for x = 0.20 with Néel
temperature ∼ 20 K. The EPR linewidth and g factor are temperature independent for x = 0.10, while for
x = 0.20 the linewidth follows a Korringa-like behavior (∆H/∆T = 0.39 mT/K) as a function of temperature.
These results are discussed in terms of nearest-neighbor Cr+3 (S = 3/2) spin-coupled pairs. Keywords:
semiconductors, X-ray diffraction, susceptibility, electron paramagnetic resonance.

CARACTERIZACIÓN ESTRUCTURAL Y MAGNÉTICA

DEL SISTEMA DE ALEACIONES

CuAl1−xCrxS2 (x = 0,10 y x = 0,20)

RESUMEN En este trabajo se reporta la śıntesis, caracterización y propiedades magnéticas del sistema de
aleaciones CuAl1−xCrxS2 (x = 0,10 y x = 0,20). Las muestras fueron sintetizadas utilizando la técnica de
fusión directa. El análisis qúımico (EDX) permitió establecer las relaciones estequiométricas de las muestras.
El análisis por difracción de rayos-X indica que las fases principales de las aleaciones cristalizan en el sistema
tetragonal con parámetros de celda a = 5,3317(1) Å, c = 10,4059(2) Å para x = 0,10 y a = 5,3331(1) Å,
c = 10,4117(2) Å para x = 0,20. Estos materiales son isomorfos con la estructura calcopirita que cristaliza
en el grupo espacial I42d. El sistema presenta un comportamiento paramagnético para x = 0,10 y antife-
rromagnético para x = 0,20 con temperatura de Néel de ∼ 20 K. El ancho de ĺınea EPR y el factor g son
independientes de la temperatura para x = 0,10, mientras que para x = 0,20 el ancho de ĺınea sigue un
comportamiento tipo Korringa como función de la temperatura (∆H/∆T = 0,39 mT/K). Estos resultados
se discuten en términos de los vecinos más cercanos de los pares de esṕın-acoplado del Cr+3 (S = 3/2). Pa-
labras clave: semiconductores, difracción de rayos-X, susceptibilidad magnética, resonancia paramagnética
electrónica.
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INTRODUCTION

Semiconductors showing ferromagnetic ordering at
room temperature have been of great interest in the
last several years due their possibilities in future spin-
tronic devices.1 In addition to potentially relevant
technological applications and interesting experimen-
tal results,2–5 it is fundamental to focus on the elec-
tronic properties of diluted magnetic chalcopyrites
(DMCHs); i.e. different chalcopyrites doped with sev-
eral transition metals.

As is well known, there are two kinds of chalcopy-
rite: II − IV − V2 and I − III − V I2. The first
class represents the ternary analogue of an III − V
semiconductor, where the element of the third col-
umn is substituted by an element of the second and
fourth columns, alternately. Similarly, the second
class of chalcopyrite is the ternary counterpart of the
II − V I semiconductor, where the cation is substi-
tuted by an element of the first and third columns, al-
ternately. Therefore, ternaries offer a vast playground
for achieving different electronic and magnetic prop-
erties due to the wide variety of sites where the tran-
sition metal (TM) can be doped; in fact, a TM can be
substituted for the II and IV sites in the first class of
chalcopyrite and for the I and III sites in the second
class. In this respect, different TMs, with their corre-
spondingly different number of d electrons, can have
different valence states when substituted in the same
chalcopyrite site.6 In particular, Cr doped CuAlS2

and AgGaS2 were predicted to have a remarkably
high Curie temperature (above room temperature),
although the estimate was based on a mean-field the-
ory which is well known to overestimate TC .7

In order to determine the structural characteriza-
tion and the magnetic behavior of these alloys, we
present in this work a study of EDX, X-ray diffrac-
tion, magnetic susceptibility and electron paramag-
netic resonance of the system CuAl1−xCrxS2 with
x = 0.10 and x = 0.20.

SAMPLES AND MEASURE-
MENTS

Polycrystalline Cr-doped CuAl1−xCrxS2 (x = 0.10
and x = 0.20) samples were obtained by using the
direct fusion technique. Stoichiometric quantities of
the elements Cu, Al, Cr and S were charged in an
evacuated and sealed quartz ampoule that was previ-
ously subjected to pyrolysis in order to avoid reaction

of the starting materials with quartz. The fusion pro-
cess was carried out into a furnace (vertical position)
heated up to 500 ◦C at a rate of 50 ◦C/h and then
heated up to 1050 ◦C at a rate of 20 ◦C/h. The
ampoule was kept at this temperature for a period
of 12 days. Finally, the sample was cooled to room
temperature at a rate of 6 ◦C/h during 2 days.

Chemical analysis of the sample was carried out
with a Hitachi S-2500 scanning electron microscope
(SEM) equipped with a Kevex EDX accessory. For
the X-ray analysis, a small quantity of the samples
was ground mechanically in an agate mortar and pes-
tle. The X-ray powder diffraction data were collected
at 298(1) K in θ/θ reflection mode using a Bruker D8
diffractometer operating in Bragg–Brentano geome-
try, equipped with an X-ray tube (Cu Kα radiation:
λ = 1.54059 Å), a nickel filter and a 1-dimensional
LynxEye detector. The specimen was scanned from
10 to 100◦ 2θ with a step size of 0.02◦ and counting
time of 1 s.

Measurements of susceptibility as a function of
temperature in the range 2–300 K with an external
magnetic field 10 mT were performed using a Quan-
tum Design SQUID magnetometer. The EPR mea-
surements in the alloys were carried out in an X band
VARIAN spectrometer with a frequency 9.4 GHz that
uses a home-made cavity in the temperature range
80–300 K.

RESULTS, ANALYSIS AND DIS-
CUSSION

Three different regions of the ingot were scanned and
the average atomic percentages — Cu (22.03%), Al
(22.08%), Cr (2.76%) and S (53.13%) for x = 0.10 and
Cu (27.16%), Al (18.58%), Cr (3.30%) and S (50.96%)
for x = 0.20 — gave an atomic ratio close to the ideal
value. Tables 1–2 show the data registered in these
regions. In Figures 1–2 spectral qualitative analy-
ses EDS for x = 0.10 and x = 0.20 are respectively
shown. The results confirm that the four elements are
present at the points under observation in the samples
analyzed, in addition to displaying a good correlation
where Al is replaced by Cr. An automatic search in
the PDF-ICDD database8 indicated that the powder
patterns contain different amounts of Al2S3 (PDF 26-
0037) for x = 0.10 and 0.20. The powder diffraction
patterns were indexed,9 and the principal phases crys-
tallize with tetragonal symmetry. These compounds
are isomorphic with the chalcopyrite structure which
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crystallizes in the space group I42d.10

Element Top region Central region Low region

%Atom (error) %Atom (error) %Atom (error)

Cu 22.62 (0.31) 21.39 (0.31) 22.10 (0.32)

Al 21.73 (0.17) 22.20 (0.17) 22.31 (0.16)

Cr 2.69 (0.08) 2.54 (0.10) 3.04 (0.12)

S 52.96 (0.27) 53.87 (0.27) 52.55 (0.27)

Table 1: Chemical analysis for x = 0.10.

Element Top region Central region Low region

%Atom (error) %Atom (error) %Atom (error)

Cu 29.14 (0.37) 24.02 (0.36) 28.33 (0.37)

Al 16.43 (0.16) 21.17 (0.17) 18.12 (0.18)

Cr 3.62 (0.09) 3.17 (0.17) 3.12 (0.17)

S 50.81 (0.26) 51.64 (0.26) 50.43 (0.27)

Table 2: Chemical analysis for x = 0.20.

Figure 1: Spectral qualitative analysis for x = 0.10.

Figure 2: Spectral qualitative analysis for x = 0.20.

The crystal structure refinement was performed
by means of the Rietveld method11 using the Full-
prof program.12 The starting parameters were taken
from the CuAlS2 chalcopyrite structure.13 The an-
gular dependence of the peak full width at half max-
imum (FWHM) was described by Cagliotti’s for-
mula.14 Peak shapes were described by the parame-
terized Thompson-Cox-Hastings pseudo-Voigt profile

function.15 The background variation was described
by a polynomial with six coefficients. The atoms ther-
mal motion was described by one overall isotropic
temperature factor. The results of the Rietveld re-
finement for two compositions are summarized in Ta-
ble 3. In Figures 3–4 the observed, calculated and
difference profile for the final cycle of Rietveld refine-
ments for x = 0.10 and x = 0.20 are respectively
shown. Atomic coordinates, fractional occupancies
and isotropic temperature factors are listed in Ta-
ble 4. Bond distances for each compound are given
in Table 5.

Figure 3: Rietveld refinement plot for x = 0.10.

Figure 4: Rietveld refinement plot for x = 0.20.

In Figures 5–6, the magnetic susceptibility χ as a
function of temperature T for x = 0.10 and 0.20 are
shown. The concentration x = 0.10 exhibits the typ-
ical behavior of a paramagnetic material, and about
140 K the ZFC and FC curves separate with decreas-
ing temperature showing clear effects of irreversibil-
ity. The concentration x = 0.20 shows the character-
istic behavior of an antiferromagnetic material with
a Néel temperature of 20 K and hysteresis effects at
very low temperatures. This result would suggest
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Composition x = 0.10 x = 0.20

molecular formula CuAl0.9Cr0.1S2 CuAl0.8Cr0.2S2

molecular weight 157.16 159.66

a (Å) 5.3317 (1) 5.3331 (1)

c (Å) 10.4059 (2) 10.4117 (2)

c/a 1.95 1.95

V (Å3) 295.81 (1) 296.13 (1)

Z 4 4

Crystal system Tetragonal Tetragonal

Space group I42d (No. 122) I42d (No. 122)

dcalc (g/cm3) 3.53 3.58

Temperature (K) 298 (1) 298 (1)

Rp(%) 6.3 6.6

Rwp(%) 6.7 7.3

Rexp(%) 3.2 4.0

S 1.1 1.1

Table 3: Rietveld refinement results for CuAl1−xCrxS2.

Atom Site x y z Foc B(Å2)

x = 0.10

Cu 4a 0 0 0 1 0.6(1)

Al 4b 0 0 1/2 0.89(2) 0.6(1)

Cr 4b 0 0 1/2 0.11(2) 0.6(1)

S 8d 0.270(1) 1/4 1/8 1 0.6(1)

x = 0.20

Cu 4a 0 0 0 1 0.8(1)

Al 4b 0 0 1/2 0.82(2) 0.8(1)

Cr 4b 0 0 1/2 0.18(2) 0.8(1)

S 8d 0.267(1) 1/4 1/8 1 0.8(1)

Table 4: Atomic coordinates and isotropic temperature
factors for CuAl1−xCrxS2.

Cu–S(i) Al(Cr)–S(ii)

x = 0.10 2.354(3) 2.230(3)

x = 0.20 2.345(3) 2.240(3)

Symmetry codes: (i)y,−x,−z (ii)0.5 − x, y, 0.75 − z

Table 5: Bond distances (Å) for CuAl1−xCrxS2.

that effects from anisotropy would be important in
this temperature range, since in this range the ther-
mal effects are small enough for the anisotropy to
influence the spin directions when the applied field is
zero or small. With a polycrystalline sample, the var-
ious crystallites can act in a way formally similar to
domains and produce hysteresis effect.16 In previous
work we have studied the concentration x = 0.33.17

The alloy exhibits a ferrimagnetic ordering with Néel
temperature of 40 K.

The inverse of the susceptibility 1/χ with tempera-
ture T (not shown) is not in accordance with a linear
Curie–Weiss for x = 0.10 and x = 0.20. These re-
sults would be due to the presence of small traces of
secondary phase in the respective phase of each con-
centration of the CuAl1−xCrxS2 system, which would

Figure 5: Temperature dependence of the magnetic sus-
ceptibility for x = 0.10.

Figure 6: Temperature dependence of the magnetic sus-
ceptibility for x = 0.20.

lead to inaccuracies in the material mass and, hence,
in the susceptibility measurements.

In Figures 7–8, the temperature evolutions of the
EPR spectra between 80 and 290 K for x = 0.10 and
between 80 and 180 K for x = 0.20 are shown. For
x = 0.10 the EPR spectra show a single isotropic
resonance with the presence of a shoulder on the left-
hand side between 80–120 K, while for x = 0.20 the
EPR spectra show a single isotropic resonance where
the intensity decreases with temperature.

In Figures 9–10, the T dependence of the linewidth
∆Hpp and the resonance field Hr are respectively
shown for each sample. For x = 0.10, the behavior of
∆Hpp is typical of a paramagnetic material, while for
x = 0.20, ∆Hpp exhibits a slight variation at 200 K
(paramagnetic behavior) and then a “sharp” increase
up to room temperature following a Korringa-like be-
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Figure 7: Temperature evolution of the EPR spectra for
x = 0.10.

Figure 8: Temperature evolution of the EPR spectra for
x = 0.20.

havior. The thermal broadening of the linewidth was
fitted using ∆Hpp = a + bT (in the range of 190–
290 K) with a = −60.2 mT and b = 0.39 mT/K. Of
these results we determined the Curie–Weiss temper-
ature ΘCW = −154.4 K from ∆H0 = −bΘCW , where
∆H0 = a is the residual linewidth.18

For x = 0.10, both the resonance field Hr and the
g factor show a slight variation in the whole temper-
ature range, and its mean value is g = 1.99(1). For
x = 0.20 it can be seen that decreasing the temper-
ature slightly decreases Hr. In addition, we see the
slope change in the temperature just where the Kor-
ringa relaxation appears, while the g factor decreases
slightly to room temperature and its mean value is
g = 1.96(1). Values obtained for g are in the range of
the particular case of Cr (III).19

Figure 9: Temperature dependence of the EPR
linewidth for x = 0.10 and x = 0.20.

Figure 10: Temperature dependence of the resonance
field for x = 0.10 and x = 0.20. The inset shows the g
factor.

CONCLUSIONS

The structural characterization showed that the prin-
cipal phases crystallize with tetragonal symmetry
and unit cell parameters a = 5.3317(1) Å, c =
10.4059(2) Å for x = 0.10 and a = 5.3331(1) Å,
c = 10.4117(2) Å for x = 0.20. These materials
are isomorphic with the chalcopyrite structure that
crystallizes in the space group I42d. The magnetic
results suggest that concentration x = 0.10 is para-
magnetic while x = 0.20 shows antiferromagnetic be-
havior with Néel temperature ∼ 20 K. In the case of
x = 0.20 the linewidth follows a Korringa-like behav-
ior (∆H/∆T = 0.39 mT/K) as a function of temper-
ature.
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